Crowdsource a little to label a lot: labeling a speech corpus of dialectal Arabic
نویسندگان
چکیده
Arabic is a language with great dialectal variety, with Modern Standard Arabic (MSA) being the only standardized dialect. Spoken Arabic is characterized by frequent code-switching between MSA and Dialectal Arabic (DA). DA varieties are typically differentiated by region, but despite their wide-spread usage, they are under-resourced and lack viable corpora and tools necessary for speech recognition and natural language processing. Existing DA speech corpora are limited in scope, consisting of mainly telephone conversations and scripted speech. In this paper we describe our efforts for using crowdsourcing to create a labeled multi-dialectal speech corpus. We obtained utterance-level dialect labels for 57 hours of high-quality audio from Al Jazeera consisting of four major varieties of DA: Egyptian, Levantine, Gulf, and North African. Using speaker linking to identify utterances spoken by the same speaker, and measures of label accuracy likelihood based on annotator behavior, we automatically labeled an additional 94 hours. The complete corpus contains 850 hours with approximately 18% DA speech.
منابع مشابه
Cross-Dialectal Data Transferring for Gaussian Mixture Model Training in Arabic Speech Recognition
Dialectal Arabic speech recognition is a difficult problem and is relatively less studied. In this paper, we propose a cross-dialectal Gaussian mixture model training criteria to transfer knowledge from one domain to the other by data sharing. Specifically, phone classification experiments on West Point Modern Standard Arabic Speech corpus and Babylon Levantine Arabic Speech corpus demonstrate ...
متن کاملA Transfer Learning Approach for Under-Resourced Arabic Dialects Speech Recognition
A major problem with dialectal Arabic speech recognition is due to the sparsity of speech resources. In this paper, we propose a transfer learning framework to jointly use large amount of Modern Standard Arabic (MSA) data and little amount of dialectal Arabic data to improve acoustic and language modeling. We have chosen the Qatari Arabic (QA) dialect as a typical example for an under-resourced...
متن کاملDevelopment of a TV Broadcasts Speech Recognition System for Qatari Arabic
A major problem with dialectal Arabic speech recognition is due to the sparsity of speech resources. In this paper, a transfer learning framework is proposed to jointly use a large amount of Modern Standard Arabic (MSA) data and little amount of dialectal Arabic data to improve acoustic and language modeling. The Qatari Arabic (QA) dialect has been chosen as a typical example for an under-resou...
متن کاملYouDACC: the Youtube Dialectal Arabic Comment Corpus
In the Arab world, while Modern Standard Arabic is commonly used in formal written context, on sites like Youtube, people are increasingly using Dialectal Arabic, the language for everyday use to comment on a video and interact with the community. These user-contributed comments along with the video and user attributes, offer a rich source of multi-dialectal Arabic sentences and expressions fro...
متن کاملNovel approaches to Arabic speech recognition: report from the 2002 Johns-Hopkins Summer Workshop
Although Arabic is currently one of the most widely spoken languages in the world, there has been relatively little speech recognition research on Arabic compared to other languages. Moreover, most previous work has concentrated on the recognition of formal rather than dialectal Arabic. This paper reports on our project at the 2002 Johns Hopkins Summer Workshop, which focused on the recognition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015